Mining Data Streams-Approximate Heavy Hitters

Barna Saha

February 9, 2016
Finding Majority

- **Input.** An array A of length m with the promise that it has a majority element—a value that is repeated strictly more than $\frac{m}{2}$ times.
- **Problem.** Find the Majority element.
Finding Majority

- **Input.** An array A of length m with the promise that it has a majority element—a value that is repeated strictly more than $\frac{m}{2}$ times.
- **Problem.** Find the Majority element in linear time.
Finding Majority

- **Input.** An array A of length m with the promise that it has a majority element—a value that is repeated strictly more than $\frac{m}{2}$ times.
- **Problem.** Find the Majority element in linear time.
- **Compute median of A.**
Finding Majority

- **Input.** An array A of length m with the promise that it has a majority element—a value that is repeated strictly more than $\frac{m}{2}$ times.

- **Problem.** Find the Majority element in linear time in a single left to right pass in “constant” space.
Problem. Find the Majority element in linear time in a single left to right pass in “constant” space.

Algorithm.

1. Set $\text{count} = 1$, $\text{current} = A(1)$.
2. For $i = 2, 3, ...$
 2.1 If $\text{count} == 0$, set $\text{current} = A(i)$, $\text{count} = 1$,
 2.2 If $A(i) == \text{current}$, set $\text{count} = \text{count} + 1$
 2.3 Else set $\text{count} = \text{count} - 1$
3. Return current
Finding Majority

- **Problem.** Find the Majority element in linear time in a single left to right pass in “constant” space.

- **Algorithm.**
 1. Set $count = 1$, $current = A(1)$.
 2. For $i = 2, 3, ...$
 2.1 If $count == 0$, set $current = A(i)$, $count = 1$,
 2.2 If $A(i) == current$, set $count = count + 1$
 2.3 Else set $count = count - 1$
 3. Return current

- **Exercise.** Given there exists a majority element, show that the above algorithm correctly returns the majority.
Heavy Hitter Problem

- **Problem.** Given an array A of length m, and a parameter k, find those values that occur at least $\frac{m}{k}$ times.

Applications:

1. **Computing popular products.** A could be all of the page views of products on Amazon.com yesterday. The heavy hitters correspond to frequently viewed items.
2. **Computing frequent search queries.** For example, A could be all of the searches on Google yesterday. The heavy hitters are then searches made most often.
3. **Identifying heavy TCP flows.** Here, A is a list of data packets passing through a network switch, each annotated with a source-destination pair of IP addresses. The heavy hitters are then the flows that are sending the most traffic. This is useful for, among other things, to identify denial-of-service attacks.
4. **Identifying volatile stocks.** Here, A is a list of stock trades.
Heavy Hitter Problem

Problem. Given an array A of length m, and a parameter k, find those values that occur at least $\frac{m}{k}$ times.

Applications:

1. **Computing popular products.** A could be all of the page views of products on *amazon.com* yesterday. The heavy hitters correspond to frequently viewed items.

2. **Computing frequent search queries.** For example, A could be all of the searches on Google yesterday. The heavy hitters are then searches made most often.

3. **Identifying heavy TCP flows.** Here, A is a list of data packets passing through a network switch, each annotated with a source-destination pair of IP addresses. The heavy hitters are then the flows that are sending the most traffic. This is useful for, among other things, to identify denial-of-service attacks.

4. **Identifying volatile stocks.** Here, A is a list of stock trades.
Heavy Hitter Problem

Can we solve Heavy Hitter Problem in small space? Ideally in $\tilde{O}(k)$ space.
Heavy Hitter Problem

- Can we solve Heavy Hitter Problem in small space? Ideally in $\tilde{O}(k)$ space.
- There is no algorithm that solves the Heavy Hitters problems in one pass while using a sublinear amount of auxiliary space.
ε-Approximate Heavy Hitter Problem

- **Input** is an array A of length m with two parameters ϵ and k.
- **Output**
 1. Every value that occurs at least $\frac{m}{k}$ times in A is in the list.
 2. Every value in the list occurs at least $\frac{m}{k} - \epsilon m$ times in A.

Why not set $\epsilon = 0$?

Space usage grows proportionately with $\frac{1}{\epsilon}$.

If we take $\epsilon = \frac{1}{2k}$, space usage is $\tilde{O}(k)$, all elements with frequency $\frac{m}{k}$ is in the list and the elements in the list have frequency at least $\frac{m}{2k}$.
\(\epsilon\)-Approximate Heavy Hitter Problem

- **Input** is an array \(A\) of length \(m\) with two parameters \(\epsilon\) and \(k\).
- **Output**
 1. Every value that occurs at least \(\frac{m}{k}\) times in \(A\) is in the list.
 2. Every value in the list occurs at least \(\frac{m}{k} - \epsilon m\) times in \(A\)
- **Why not set \(\epsilon = 0\)?**
\(\epsilon\)-Approximate Heavy Hitter Problem

- **Input** is an array \(A\) of length \(m\) with two parameters \(\epsilon\) and \(k\).
- **Output**
 1. Every value that occurs at least \(\frac{m}{k}\) times in \(A\) is in the list.
 2. Every value in the list occurs at least \(\frac{m}{k} - \epsilon m\) times in \(A\).
- **Why not set \(\epsilon = 0\)?**
- **Space usage grows proportionately with \(\frac{1}{\epsilon}\).**
\(\epsilon\)-Approximate Heavy Hitter Problem

- **Input** is an array \(A\) of length \(m\) with two parameters \(\epsilon\) and \(k\).
- **Output**
 1. Every value that occurs at least \(\frac{m}{k}\) times in \(A\) is in the list.
 2. Every value in the list occurs at least \(\frac{m}{k} - \epsilon m\) times in \(A\)
- **Why not set \(\epsilon = 0\)?**
- **Space usage grows proportionately with \(\frac{1}{\epsilon}\).**
- **If we take \(\epsilon = \frac{1}{2k}\), space usage is \(\tilde{O}(k)\), all elements with frequency \(\frac{m}{k}\) is in the list and the elements in the list have frequency at least \(\frac{m}{2k}\).**
Estimating Frequency of Elements

- **Input** Stream of m elements from a universe $[1, n]$: $A(1), A(2), \ldots, A(m)$.
- Frequency of an element $i \in [1, n]$ in the stream is $f_i = |t \mid A(t) = i|$.
- **Problem**
 - For $i \in [n]$, estimate f_i (Point Query)
 - For $\phi \in [0, 1]$, find all i with $f_i \geq \phi m$. (Heavy Hitter)
Count-Min Sketch

- Select an $\epsilon > 0$ and $\delta > 0$: ϵ denotes the error-parameter, and δ denotes our confidence.
- Select $d = \ln \frac{1}{\delta}$ hash functions h_1, h_2, \ldots, h_d independently and randomly from a pair-wise independent hash family. Each $h_i : \{1, 2, \ldots, n\} \rightarrow \{1, 2, \ldots, w\}$ where $w = \frac{e}{\epsilon}$.
- Initialize a table T of dimension $d \times w$ all with 0.
- Update: At time t, when $A(t)$ arrives, do the following.
 - $T(1, h_1(A(t))) = T(1, h_1(A(t))) + 1$
 - $T(2, h_2(A(t))) = T(2, h_2(A(t))) + 1$
 -
 - $T(d, h_d(A(t))) = T(d, h_d(A(t))) + 1$

http://research.neustar.biz/tag/count-min-sketch/
Count-Min Sketch: Point Query

- **Problem** For $i \in [n]$, estimate f_i
- **Output** An estimate \hat{f}_i such that $f_i \leq \hat{f}_i \leq f_i + \epsilon \|f\|_1$
- **Algorithm** Construct Count-Min sketch. Return

$$\min_{l=1}^{d} T(l, h_l(i))$$
Count-Min Sketch: Point Query

- **Algorithm** Construct Count-Min sketch. Return

\[\min_{l=1}^{d} T(l, h_l(i)) \]

- Each \(T(l, h_l(i)) \geq f_i \). Hence \(\min_{l=1}^{d} T(l, h_l(i)) \geq f_i \).

- Define an indicator random variable \(X_{j}^{l} \), \(j = 1, 2, ..n \) and \(l = 1, 2, .., d \).

\[X_{j}^{l} = 1 \text{ if } h_l(j) = h_l(i), \text{ else } X_{j}^{l} = 0 \]

- Define \(Y = \sum_{j=1}^{n} f_j X_{j}^{l} \). Then \(T(l, h_l(i)) = Y \).
Count-Min Sketch: Point Query

\[E[T(l, h_l(i))] = E[Y] = \sum_{j=1}^{j=n} E[f_j X^j_l] = \sum_{j=1}^{j=n} f_j E[X^j_l] \]

\[= \sum_{j=1}^{j=n} f_j \text{Prob}(h_l(j) = h_l(i)) \]

\[= \sum_{j=1}^{j=n} \frac{f_j}{w} \quad (h \text{ is picked from a pair-wise family}) \]

\[= \frac{\|f\|_1}{w} \]
Count-Min Sketch: Point Query

\[\text{Prob}(T(l, h_l(i))] > \epsilon \|f\|_1) = \text{Prob}(T(l, h_l(i))] > w\epsilon E[T(l, h_l(i))] \]

\[\leq \frac{1}{w\epsilon} \] (By Markov Inequality)

\[= \frac{1}{e} \] (since \(w = \frac{e}{\epsilon} \))
Count-Min Sketch: Point Query

\[
Prob \left(\min_{l=1}^{d} T(l, h_l(i)) \right) > \epsilon \|f\|_1
\]

\[
= Prob \left(\bigcap_{l=1}^{d} T(l, h_l(i)) \right) > \epsilon \|f\|_1
\]

\[
= \prod_{l=1}^{d} \text{Prob} (T(l, h_l(i)) > \epsilon \|f\|_1) \leq \left(\frac{1}{e} \right)^{\ln \frac{1}{\delta}} = \delta
\]

▶ Hence \(Prob \left(\min_{l=1}^{d} T(l, h_l(i)) \right) \leq \epsilon \|f\|_1 \) \(\geq 1 - \delta \).

▶ Therefore \(f_i \leq \hat{f}_i \leq f_i + \epsilon \|f\|_1 \) with probability \(\geq 1 - \delta \).

▶ Space = \(O(wd) = O\left(\frac{1}{\epsilon} \ln \frac{1}{\delta} \right) \).
Count-Min Sketch: Heavy Hitter

- Set $\delta' = \frac{\delta}{n}$, using space $O\left(\frac{1}{\epsilon} \ln \frac{n}{\delta}\right)$ obtain estimates such that “For All i is $f_i \leq \hat{f}_i \leq f_i + \epsilon m$.

- Use a min-heap to store the heavy-hitters.
 1. Keep a count on the total number of elements m arrived so far.
 2. When item $A(i)$ arrives, compute its estimated frequency from the count-min sketch data structure.
 3. If the count is above $\frac{m}{k}$, insert it in the heap with key $\text{Count}(A(i))$, and delete any previous occurrence of $A(i)$ from the heap.
 4. If any element in the heap has count less than $\frac{m}{k}$ delete it through operations such as Find-Min and Extract-Min.
 5. Assuming no large error happens in the Count-Min sketch, the heap size is bounded by $2k$. Why? Therefore extra work per item to process the heap is $O(\log k)$.
 6. At the end, scan the heap, and for every item whose estimated frequency is $\geq \frac{m}{k}$ return it as a heavy hitter.
Count-Min Sketch: Heavy Hitter

- Set \(\delta' = \frac{\delta}{n} \), using space \(O\left(\frac{1}{\epsilon} \ln \frac{n}{\delta} \right) \) obtain estimates such that “For All \(i \) is \(f_i \leq \hat{f}_i \leq f_i + \epsilon m \).

- Set \(\delta' = \frac{\delta}{m} \), using space \(O\left(\frac{1}{\epsilon} \ln \frac{m}{\delta} \right) \) obtain estimates such that “For All \(t = 1, 2, \ldots, m \) the estimated frequency is within the error-range.

- Use a min-heap to store the heavy-hitters.
 1. Keep a count on the total number of elements \(m \) arrived so far.
 2. When item \(A(i) \) arrives, compute its estimated frequency from the count-min sketch data structure.
 3. If the count is above \(\frac{m}{k} \), insert it in the heap with key \(\text{Count}(A(i)) \), and delete any previous occurrence of \(A(i) \) from the heap.
 4. If any element in the heap has count less than \(\frac{m}{k} \) delete it through operations such as \(\text{Find-Min} \) and \(\text{Extract-Min} \).
 5. Assuming no large error happens in the Count-Min sketch, the heap size is bounded by \(2k \). Why? Therefore extra work per item to process the heap is \(O(\log k) \).
 6. At the end, scan the heap, and for every item whose estimated frequency is \(\geq \frac{m}{k} \) return it as a heavy hitter.
Miscellaneous

- Twitter’s algebird and ClearSpring’s stream-lib offer implementations of Count-Min sketch and various other data structures applicable for stream mining applications.
- Application: Mostly a list of papers that use CM-sketch
 - http://sites.google.com/site/countminsketch/cm-eclectics
 - http://sites.google.com/site/countminsketch/compressed-sensing
 - http://sites.google.com/site/countminsketch/databases
Boosting by Median

• Suppose there is an Algorithm that returns an estimate \hat{F} of a true estimate F such that $|\hat{F} - F|$ is small with probability $\frac{7}{8}$.

• How can we design an algorithm that will return an estimate G of F such that $|G - F|$ is small with probability $\frac{99}{100}$? (In general $1 - \delta$)
Boosting by Median

- Suppose there is an Algorithm that returns an estimate \hat{F} of a true estimate F such that $|\hat{F} - F|$ is small with probability $\frac{7}{8}$.
- How can we design an algorithm that will return an estimate G of F such that $|G - F|$ is small with probability $\frac{99}{100}$? (In general $1 - \delta$)
- Run $s = 6 \log \frac{1}{\delta}$ independent copies of the Algorithm to obtain estimates $\hat{F}_1, \hat{F}_2, \ldots, \hat{F}_s$. Set $G = \text{median}_{i=1}^{s} \hat{F}_i$.

What is the probability that the median is a bad estimate?

Either all \(\lfloor s/2 \rfloor \) copies with estimate below \(G \) are bad or, \(\lfloor s/2 \rfloor \) copies with estimate above \(G \) are bad. That is there are \(3 \log \frac{1}{\delta} \) copies that are at least bad for \(G \) to be a bad estimate.

Define an indicator random variable \(X_i \) which is 1 if the \(i \)th estimate \(\hat{F}_i \) is bad. Then \(E[X_i] = \frac{1}{8} \).

Then the number of bad estimates is \(Y = \sum_i X_i \), and \(E[Y] = \frac{3}{4} \log \frac{1}{\delta} \).

Bound \(\text{Prob}(Y > 3 \log \frac{1}{\delta}) \) using Chernoff's bound.
Boosting by Median

- What is the probability that the median is a bad estimate?
- Either all \(\left\lfloor \frac{s}{2} \right\rfloor \) copies with estimate below \(G \) are bad or, \(\left\lfloor \frac{s}{2} \right\rfloor \) copies with estimate above \(G \) are bad. That is there are \(3 \log \frac{1}{\delta} \) copies that are at least bad for \(G \) to be a bad estimate.
What is the probability that the median is a bad estimate?

Either all $\lfloor \frac{s}{2} \rfloor$ copies with estimate below G are bad or, $\lfloor \frac{s}{2} \rfloor$ copies with estimate above G are bad. That is there are $3 \log \frac{1}{\delta}$ copies that are at least bad for G to be a bad estimate.

Define an indicator random variable X_i which is 1 if the ith estimate \hat{F}_i is bad. Then $E[X_i] = \frac{1}{8}$.

Bound $\text{Pr}(Y > 3 \log \frac{1}{\delta})$ using Chernoff’s bound.
What is the probability that the median is a bad estimate?

Either all $\left\lfloor \frac{s}{2} \right\rfloor$ copies with estimate below G are bad or, $\left\lfloor \frac{s}{2} \right\rfloor$ copies with estimate above G are bad. That is there are $3 \log \frac{1}{\delta}$ copies that are at least bad for G to be a bad estimate.

Define an indicator random variable X_i which is 1 if the ith estimate \hat{F}_i is bad. Then $E[X_i] = \frac{1}{8}$.

Then the number of bad estimates is $Y = \sum_i X_i$. and $E[Y] = \frac{6 \log \frac{1}{\delta}}{8} = \frac{3}{4} \log \frac{1}{\delta}$
Boosting by Median

What is the probability that the median is a bad estimate?

Either all \(\lceil \frac{s}{2} \rceil\) copies with estimate below \(G\) are bad or, \(\lfloor \frac{s}{2} \rfloor\) copies with estimate above \(G\) are bad. That is there are \(3 \log \frac{1}{\delta}\) copies that are at least bad for \(G\) to be a bad estimate.

Define an indicator random variable \(X_i\) which is 1 if the \(i\)th estimate \(\hat{F}_i\) is bad. Then \(E[X_i] = \frac{1}{8}\).

Then the number of bad estimates is \(Y = \sum_i X_i\). and \(E[Y] = \frac{6 \log \frac{1}{\delta}}{8} = \frac{3}{4} \log \frac{1}{\delta}\).

Bound \(\text{Prob}(Y > 3 \log \frac{1}{\delta})\) using Chernoff’s bound.
Boosting by Median

- Upper Tail version of Chernoff Bound. For $\epsilon > 1$

\[
\Pr(Y > E[Y](1 + \epsilon)) \leq e^{-\frac{E[Y]\epsilon^2}{2 + \epsilon}}
\]
Boosting by Median

- Upper Tail version of Chernoff Bound. For $\epsilon > 1$

\[
\text{Prob}(Y > E[Y](1 + \epsilon)) \leq e^{-\frac{E[Y]\epsilon^2}{2+\epsilon}}
\]

- \[
\text{Prob} \left(Y > 3 \log \frac{1}{\delta} \right) = \text{Prob} \left(Y > \frac{3}{4} \log \frac{1}{\delta} (1 + 3) \right)
\]

\[
\leq e^{-\frac{3}{4} \left(\log \frac{1}{\delta} \right) 9 \frac{1}{5}} < \delta
\]
Versions of Chernoff Bound

Reference:
https://www.cs.princeton.edu/courses/archive/fall09/cos521/Handouts/probabilityandcomputing.pdf