Map Reduce Algorithms

Barna Saha

Acknowledgement: Majority of the slides are taken from Sergei Vassilivski’s tutorial on MapReduce
A Sense of Scale

At web scales...
- Mail: Billions of messages per day
- Search: Billions of searches per day
- Social: Billions of relationships

...even the simple questions get hard
- What are the most popular search queries?
- How long is the shortest path between two friends?
- ...
To Parallelize or Not?

Distribute the computation
- Hardware is (relatively) cheap
- Plenty of parallel algorithms developed

But parallel programming is hard
- Threaded programs are difficult to test. One successful run is not enough
- Threaded programs are difficult to read, because you need to know in which thread each piece of code could execute
- Threaded programs are difficult to debug. Hard to repeat the conditions to find bugs
- More machines means more breakdowns
MapReduce makes parallel programming easy
- Tracks the jobs and restarts if needed
- Takes care of data distribution and synchronization

But there’s no free lunch:
- Imposes a structure on the data
- Only allows for certain kinds of parallelism
MapReduce Setting

Data:
- “Which search queries co-occur?”
- “Which friends to recommend?”
- Data stored on disk or in memory

Computation:
- Many commodity machines
MapReduce Basics

Data:
- Represented as <Key, Value> pairs

Example: A Graph is a list of edges
- Key = (u,v)
- Value = edge weight

(u,v) \hspace{1cm} w_{uv}
MapReduce Basics

Data:
- Represented as <Key, Value> pairs

Operations:
- Map: <Key, Value> → List(<Key, Value>)
 - Example: Split all of the edges
MapReduce Basics

Data:
- Represented as <Key, Value> pairs

Operations:
- Map: <Key, Value> → List(<Key, Value>)
- Shuffle: Aggregate all pairs with the same key
MapReduce Basics

Data:
- Represented as \(<\text{Key}, \text{Value}\>\) pairs

Operations:
- Map: \(<\text{Key}, \text{Value}\> \to \text{List}(<\text{Key}, \text{Value}>)\)
- Shuffle: Aggregate all pairs with the same key
- Reduce: \(<\text{Key}, \text{List(Value)}\> \to <\text{Key}, \text{List(Value)}>\)
 - Example: Add values for each key

```
x  5  4  1
  u  4  3
  w  2  1
  v  5  2  3

u  7
  v  10
  x  10
  w  3
```
MapReduce Basics

Data:
- Represented as \(<\text{Key}, \text{Value}\>\) pairs

Operations:
- Map: \(<\text{Key}, \text{Value}\> \rightarrow \text{List}<\text{Key}, \text{Value}>\)
- Shuffle: Aggregate all pairs with the same key
- Reduce: \(<\text{Key}, \text{List}\left(\text{Value}\right)> \rightarrow \text{List}<\text{Key}, \text{List}\left(\text{Value}\right)>\)
Given a sparse matrix in row major order
Output same matrix in column major order

Given:

<table>
<thead>
<tr>
<th>row 1</th>
<th>(col 1, a)</th>
<th>(col 2, b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>row 2</td>
<td>(col 2, c)</td>
<td>(col 3, d)</td>
</tr>
<tr>
<td>row 3</td>
<td>(col 2, e)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td>e</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Matrix Transpose

Map:
- Input: <row i, (col_i1, val_i1), (col_i2, val_i2), ... >
- Output: <col_i1, (row i, val_i1)>
- <col_i2, (row i, val_i2)>
-

```
row 1 | (col 1, a) | (col 2, b)  
row 2 | (col 2, c) | (col 3, d)  
row 3 | (col 2, e) |
```

```
col 1 | (row 1, a)  
col 2 | (row 1, b)  
col 2 | (row 2, c)  
col 3 | (row 2, d)  
col 2 | (row 3, e)  
```
Matrix Transpose

Map:
- Input: \(<\text{row } i, (\text{col}_{i1}, \text{val}_{i1}), (\text{col}_{i2}, \text{val}_{i2}), \ldots >\>
- Output: \(<\text{col}_{i1}, (\text{row } i, \text{val}_{i1})>\>
- \(<\text{col}_{i2}, (\text{row } i, \text{val}_{i2})>\>
- \ldots

Shuffle:

```
<table>
<thead>
<tr>
<th>col 1</th>
<th>(row 1, a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>col 2</td>
<td>(row 2, c)</td>
</tr>
<tr>
<td>col 2</td>
<td>(row 3, e)</td>
</tr>
<tr>
<td>col 3</td>
<td>(row 2, d)</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>col 1</th>
<th>(row 1, a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>col 2</td>
<td>(row 2, c)</td>
</tr>
<tr>
<td>col 2</td>
<td>(row 3, e)</td>
</tr>
<tr>
<td>col 3</td>
<td>(row 2, d)</td>
</tr>
</tbody>
</table>
```
Matrix Transpose

Map:
- Input: <row i, (col_{i1}, val_{i1}), (col_{i2}, val_{i2}), ...>
- Output: <col_{i1}, (row i, val_{i1})>
- <col_{i2}, (row i, val_{i2})>
-

Shuffle

Reduce:
- Sort by row number

```
<table>
<thead>
<tr>
<th>col 1</th>
<th>(row 1, a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>col 2</td>
<td>(row 2, c) (row 1, b) (row 3, e)</td>
</tr>
<tr>
<td>col 3</td>
<td>(row 2, d)</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>col 1</th>
<th>(row 1, a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>col 2</td>
<td>(row 1, b) (row 2, c) (row 3, e)</td>
</tr>
<tr>
<td>col 3</td>
<td>(row 2, d)</td>
</tr>
</tbody>
</table>
```
Matrix Transpose

Given a sparse matrix in row major order
Output same matrix in column major order

Given:

<table>
<thead>
<tr>
<th>row 1</th>
<th>(col 1, a)</th>
<th>(col 2, b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>row 2</td>
<td>(col 2, c)</td>
<td>(col 3, d)</td>
</tr>
<tr>
<td>row 3</td>
<td>(col 2, e)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td>e</td>
</tr>
</tbody>
</table>

Output:

<table>
<thead>
<tr>
<th>col 1</th>
<th>(row 1, a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>col 2</td>
<td>(row 1, b)</td>
</tr>
<tr>
<td>col 3</td>
<td>(row 2, d)</td>
</tr>
</tbody>
</table>
MapReduce Implications

Operations:
- **Map**: \(<\text{Key}, \text{Value}\> \rightarrow \text{List}(\langle\text{Key}, \text{Value}\rangle)\)
 - Can be executed in parallel for each pair.

- **Shuffle**: Aggregate all pairs with the same Key
 - Synchronization step

- **Reduce**: \(<\text{Key}, \text{List(Value)}\> \rightarrow \langle\text{Key}, \text{List(Value)}\rangle\)
 - Can be executed in parallel for each Key
MapReduce Implications

Operations:
- Map: \(<\text{Key, Value}> \rightarrow \text{List(<Key, Value>)}\)
 - Can be executed in parallel for each pair
 - Provided by the programmer
- Shuffle: Aggregate all pairs with the same Key
 - Synchronization step
 - Handled by the system
- Reduce: \(<\text{Key, List(Value)}> \rightarrow <\text{Key, List(Value)}>\)
 - Can be executed in parallel for each Key
 - Provided by the programmer

The system also:
- Makes sure the data is local to the machine
- Monitors and restarts the jobs as necessary
Trying MapReduce

Hadoop:
- Open source version of MapReduce
- Can run locally

Amazon Web Services
- Upload datasets, run jobs
- Run jobs ... (Careful: pricing round to nearest hour, so debug first!)
The World of MapReduce

Practice:
- Used very widely for big data analysis
- Google, Yahoo!, Amazon, Facebook, LinkedIn, ...

Beyond Simple MR:
- Many similar implementations and abstractions on top of MR: Hadoop, Pig, Hive, Flume, Pregel, ...
- Same computational model underneath
MapReduce: Overview

Multiple Processors:
- 10s to 10,000s processors

Sublinear Memory
- A few Gb of memory/machine, even for Tb+ datasets
- Unlike PRAMs: memory is not shared

Batch Processing
- Analysis of existing data
- Extensions used for incremental updates, online algorithms
For an input of size n:

Memory
- Cannot store the data in memory
- Insist on sublinear memory per machine: $O(n^{1-\epsilon})$ for some $\epsilon > 0$

Machines
- Machines in a cluster do not share memory
- Insist on sublinear number of machines: $O(n^{1-\epsilon})$ for some $\epsilon > 0$

Synchronization
- Computation proceeds in rounds
- Count the number of rounds
- Aim for $O(1)$ rounds
Example

Distributed Sum:
- Given a set of n numbers: $a_1, a_2, \ldots, a_n \in \mathbb{R}$, find $S = \sum_i a_i$

MapReduce:
- Compute $M_j = a_{jk} + a_{jk+1} + \ldots + a_{j(k+1)-1}$ for $k = \sqrt{n}$ in Round 1
- Round 2: add the \sqrt{n} partial sums.
Given a graph $G = (V, E)$ on $|V| = N$ vertices and $|E| = M \geq N^{1+c}$ edges for some constant $c > 0$, compute Minimum Spanning Tree of the graph.

Idea: Distribute edges randomly to machines. Compute MST on the local edges. Combine and Repeat!